"У Google вышло очень занятное исследование: они сравнили, как LLM и человеческий мозг обрабатывают язык
В качестве LM взяли Whisper, а нейронную активность человека записывали с помощью интракраниальных электродов во время спонтанных разговоров. Затем векторы эмбеддингов модельки наложили на векторы паттернов мозга и оценили линейную зависимость. Вот что получилось:
➖ Соответствие удивительно четкое и геометрия эмбеддингов в LLM (то есть отношения между словами в embedding-пространстве) соотносится с представлениями в мозге.
➖ Во время слушания Speech-эмбеддинги явно коррелируют с активностью в слуховой коре (верхняя височная извилина), затем language-эмбеддинги коррелируют с активностью в зоне Брока (нижняя лобная извилина).
➖ Во время говорения – наоборот. Language-эмбеддинги сначала "активируются" в зоне Брока (планирование высказывания), затем speech-эмбеддинги активируются в моторной коре (непосредственно говорение), и в конце снова в слуховой коре при восприятии собственной речи.
Это удивительно, потому что технически мозг и LLM используют разные подходы. Да, и там и там нейроны, но в науке принято считать, что мозг "использует" символьный подход, то есть полагается на четкие семанические структуры, синтаксис и иерархию слов. В модельках такого нет, они понимают язык статистически.
И все-таки получается, что обычный next token prediction оказывается очень похож на реальный нейронный код, и мы неожиданно близко подобрались к моделированию мозга.
Использованные источники:
Deciphering language processing in the human brain through LLM representations"